Collapse

SearchPrint Common Problems and Solutions for Q-Jet Carbs


Common Problems and Solutions for Q-Jet Carbs
Date Added: 5/22/2018
Posted by:
 Patrick

Viewed: 699 times

Common Problems and Solutions for Q-Jet Carbs
by Lars Grimsrud
SVE Automotive Restoration
Musclecar, Collector & Exotic Auto Repair & Restoration
Broomfield, CO

Over the years, I've rebuilt and tested several hundred Q-Jets; I've done over 140 just in the last year. Doing this, I've
seen a lot of problems, issues, and plain weird things on these carbs, so I thought I'd share a sampling of the things
I've found wrong with these carbs with all of you. As you rebuild your own carb, some of these issues might be
things for you to watch for.
As always, if any of you have trouble with your Q-Jets, or if you need any assistance, feel free to drop me a note....
So here we go....
Q-Jet Problems I have seen (and that I can remember right now...):
 
  Missing Fuel Filter:

Results in:
Lack of a fuel filter will allow dirt and debris to get into the carb. This often unseats the needle, resulting
in severe carb flooding. I have also seen this cause severe sediment build-up in the float bowl, with eventual
plugging of metering orifices, resulting in poor idle and other performance problems such as jammed power piston.
Comments: A lot of Q-Jets have had their filters removed. People seem to think that the little filter in the carb must
be very restrictive to fuel flow, so they toss it and install an in-line filter. Eventually, somebody removes the in-line
filter, but never puts the in-carb filter back in. The in-carb filter is actually very good, and does not produce a flow
restriction.
 
    Missing Fuel Filter Spring:

Results in:
A missing filter spring will allow dirt to completely bypass the filter. results in same problems as a
missing fuel filter.
Comments: These springs are commonly lost during filter changes. Many people don’t see a purpose in the spring,
so they leave them out. I’ve also heard people say that the spring makes the filter “block off” fuel flow, so they
remove it. The spring is essential for proper filter operation.
 
    Stripped Fuel Inlet Threads:

Results in:
Inability to tighten the inlet fitting with resulting fuel dripping/leaking onto the intake manifold.
Comments: Very common on the pre-’75 carbs with the smaller diameter inlet fittings. I’ve seen people try to epoxy
the fittings in place. This never works. There are also over-sized self-tapping fittings available that can solve the
problem temporarily, but these fittings will also strip out. There are O-Ring type adapters that can be used to seal up
the inlet system, but these fittings do not allow use of the in-carb fuel filter. The only way to properly repair this
problem is to have the inlet machined and tapped for a HeliCoil thread insert.
 
    Damaged or Broken Fuel Inlet Fitting:

Results in:
Fuel leaking at carb inlet. Fitting cannot be tightened enough to stop leakage.
Comments: It is actually possible for the big 1” Hex fitting at the carb inlet to break internally. The cone-shaped
inner seal surface breaks loose from the wall of the fitting, making the fitting appear to be a 2-piece assembly. It is
also common for the cone-shaped inner seaing surface to be gouged, scratched, or damaged, making it impossible
for the flared tube end to seal against it. Replace this fitting if there is any damage.
 
    Missing Inlet Fitting Seal:

Results in:
Fuel leaking at carb inlet. Fitting cannot be tightened enough to stop leakage.
Comments: The early Q-Jets use a black, rubber-coated metal seal ring up against the hex nut part of the big inlet
fitting as a fitting seal. Later Q-Jets use a white plastic seal ring at the end of the fitting threads as a fitting seal.
These seals – not the fitting threads – seal the fitting. There is no point in using Teflon Pipe Tape on the threads to
seal the fitting if these seals are missing.

 
    Stripped Inlet Seat Threads:

Results in:
A loose/stripped seat in the float bowl will allow fuel to leak by the needle/seat assembly. Mild to severe
flooding can result. Poor idle. Poor hot-start.
Comments: Degradation and stripping of the seat threads is common in the older Q-Jets – especially the ones that
have been commercially rebuilt and sandblasted. I often see carbs with the seat epoxied into the stripped out float
bowl. Epoxy will not hold the seat in the bowl for very long. The problem can only be fixed by machining and
tapping the seat inlet threads for a HeliCoil insert.
 
    Damaged/Leaking Needle/Seat:

Results in:
Mild to severe flooding and rich-running conditions. Poor idle. Idle mixture screws will be nonresponsive. Hard to hot-start.
Comments: It doesn’t take much to cause enough damage to a needle/seat assembly to make it leak: A piece of
debris passing through or damaged caused during a previous rebuild process can easily make the assembly leak.
Replace the assembly anytime the carb exhibits flooding or fuel control problems.
 
    Needle Retaining Clip Incorrectly Installed to Float Arm:

Results in:
Flooding, poor idle, poor hot-start, fuel puddling in bottom of intake after shut-down.
Comments: This is one of the most common assembly problems I see on Q-Jets. GM actually issued a Service
Bulletin on this subject back in the late ‘60s because GM technicians were doing the same mistake. There is a small
retaining wire on the needle. The float arm has two holes in it where the needle interfaces. People think the retainer
goes through the float arm holes. Fact is, the retainer slips over the rear edge of the float arm, and must not be
installed through the holes. Installing the retainer through the float arm holes results in the needle and/or float
jamming.
 
    Float Level Too Low:

Results in:
Hesitations, sluggish performance, poor idle mixture screw response, surging at cruise, “flat” feeling
going to wide open throttle.
Comments: Different year Q-Jets have different float level requirements. The early carbs all have a factory spec of
¼”. The late carbs have much lower specs at about .420”. Setting up an early carb to the late spec is a common
mistake, and will cause performance problems. Personally, I prefer setting up the early carbs to a float level of .275”
to .375”. I run the late model carbs at .400” - .410”. ‘
 
    Float Level Too High:

Results in:
Flooding, fuel coming out of accelerator pump shaft hole, leaking air horn gasket, fuel discharging out
main discharge nozzles at idle, fuel dribbling down venturi after engine shut-down, poor hot-start, hesitations off
idle, poor fuel economy.
Comments: See comments above for Float Level Too Low. Often, late model carbs are set up to early model specs.
This results in poor performance on the post-’75 carbs.
 
    Incorrect Float Installed:

Results in:
Flooding, fuel coming out of accelerator pump shaft hole, leaking air horn gasket, fuel discharging out
main discharge nozzles at idle, fuel dribbling down venturi after engine shut-down, poor hot-start, hesitations off
idle, poor fuel economy.
Comments: Over the years, several different floats were used on the Q-Jets. These floats had different geometry with
differing float arm lengths and different float lengths. Some floats can be interchanged, but this will result in
binding, sticking and improper needle control. I also see a lot of aftermarket brass floats used in Q-Jets. The original
carbs came from the factory with NitroFill floats. Brass floats do not behave the same. Be sure to install a correct
NitroFill float when you work on these carbs. Echlin makes an exact reproduction and correct replacement float.
 
    Fuel-Logged Float:

Results in:
Flooding, fuel coming out of accelerator pump shaft hole, leaking air horn gasket, fuel discharging out
main discharge nozzles at idle, fuel dribbling down venturi after engine shut-down, poor hot-start, hesitations off
idle, poor fuel economy.
Comments: Older NitroFill floats can actually become fuel soaked and start to float lower than intended. This has
the same effect as raising the float level. Replace the float any time you rebuild the carb.

 
    Float Binding Against Power Piston Tower:

Results in:
Flooding, fuel coming out of accelerator pump shaft hole, leaking air horn gasket, fuel discharging out
main discharge nozzles at idle, fuel dribbling down venturi after engine shut-down, poor hot-start, hesitations off
idle, poor fuel economy.
Comments: During rebuilding, it is easy to bump and bend the arms on the float. If the arms are squeezed together,
the float arms can rub against the power piston tower, and this will restrict float movement. In severe conditions, it
will prevent the needle from ever seating, resulting in severe flooding. It is also possible to bend the float arms such
that the float itself rubs against the walls of the float bowl. This causes the same problem.
 
    Incorrect Main Jets:

Results in:
Hesitations, sags, poor performance, ineffective idle mixture screws, poor idle, surging, poor mileage,
poor vacuum, sooting out the tailpipes, poor starting characteristics, stumbles, poor WOT power.
Comments: “Creatively jetted” Q-Jets are more the norm than the exception. Be sure you know the stock and correct
jetting configuration for your carb before you ever begin chasing problems. Always start with the correct stock
jetting setup before you start tuning, and keep changes conservative: The boys and girls who designed these things
in Detroit put a lot of work into the jetting configuration on these carbs, and they actually knew what they were
doing…
 
    Incorrect Primary Metering Rods:

Results in:
Poor idle, rich idle, ineffective idle mixture screws, surging at cruise, poor mileage, poor cold-running
characteristics, hesitations off idle and/or at cruise, poor manifold vacuum with resultant ancillary problems.
Comments: See comments for main jetting above.
 
    Incorrect Secondary Metering Rods:

Results in:
Poor WOT performance, sags or flat spots going into the secondary side, car “falling on its face”
somewhere in the secondary range, smoke at WOT.
Comments: Since the secondary rods are so easy to change, they are frequently used as the “primary tuning tool” on
a Q-Jet. This results in some pretty strange rods being installed. Make sure you know which rods are stock for your
application, and make changes in small increments from there.
 
    Incorrect Power Piston Spring:

Results in:
Poor idle, rich idle, ineffective idle mixture screws, hesitations and stumbles.
Comments: At some time, there must have been a popular article published that told people to cut their power piston
springs to hop up their Q-Jet: I see more cut springs that you can imagine. A cut, or soft, spring will keep the power
piston seated in the full lean position during part-throttle power, resulting in a sag and poor throttle “feel” during
part-throttle acceleration. In contrast, if a stiff spring has been installed, the piston will never seat, and the carb will
be running in a full-rich condition even at idle. This causes incredible tuning problems for idle and off-idle
performance, and the idle mixture screws will have little effect. New power piston springs are available in packs of
10. If you suspect the spring to be non-original, stick in a new one to eliminate this as a problem.
 
    Jammed Power Piston:;

Results in:
Poor idle, rich idle, ineffective idle mixture screws, hesitations and stumbles.
Comments: The power piston can be jammed in either the full lean or full rich position, producing the same
symptoms as an incorrect spring. You can test the power piston with the engine “off” by inserting a thin, long
screwdriver down the bowl vent in the air horn. You should be able to depress the power piston and feel it pop back
up. A jammed piston is usually caused by dirt entering the bowl, but can also be caused by carbon sooting up
through the intake manifold from bad valves or valve timing problems.
 
    Bent Primary Metering Rod Hanger Arms:

Results in:
Flooding, poor idle, hesitations, poor throttle response, poor fuel economy, ineffective idle mixture
screws, sooting out the tailpipe, plug fouling.
Comments: If the primary metering rods were not engaged properly into the main jets before the air horn was
installed to the fuel bowl, the rods will bend and this will also bend the piston hanger arms. If the arms are not bent

back to their correct and original position, the primary metering rods will be pulled up out of the jets into the fullrich position, if they engage in the jets at all.
 
    Bent Primary Metering Rods:

Results in:
Flooding, poor idle, hesitations, poor throttle response, poor fuel economy, ineffective idle mixture
screws, sooting out the tailpipe, plug fouling.
Comments: If the primary metering rods were not engaged properly into the main jets before the air horn was
installed to the fuel bowl, the rods will bend and fail to engage into the main jets. This causes a severe rich
condition.
 
    Cut Power Piston Lower Stop Pin:

Results in:
Hesitations, stumbles, poor idle, surging at cruise, ineffective idle mixture screws, hot running, sluggish
performance.
Comments: Many (not all) Q-Jets have a lower stop pin in the power piston. This pin rests against a cam in the
throttle plate, and determines the lowest (leanest) position for the power piston. Cutting this pin results in the
primary metering rods seating too deeply into the main jets, severely restricting fuel flow. Again, there must have
been an article published at some time telling people to do this…
 
    Incorrectly Set Power Piston Stop Height:

Results in:
Poor idle, rich idle, ineffective idle mixture screws, hesitations and stumbles.
Comments: Post-’75 Q-Jets have an adjustable power piston stop that determines the lowest (leanest) position of the
piston. Raising or lowering this stop outside its limits will adversely affect all performance parameters of the power
enrichment circuit.
 
    Incorrectly Adjusted Secondary Rod Hanger Height:

Results in:
Lean secondary performance, flat spot going into the secondaries, poor WOT power.
Comments: It is common for the secondary rod hanger to not pull the rods up out of the metering holes adequately.
This produces a lean condition with associated poor power. The distance from the top of the choke rear airhorn wall
to the center of the rod holes with the secondary airvalve in the wide open position should be 41/64”.
 
    Incorrectly Adjusted Secondary Airvalve:

Results in:
Car falls on its face when the gas pedal is pushed to the floor, sag going into the secondaries, flat spot
going into the secondaries, jerk or delay going into the secondaries.
Comments: Very common problem. The secondary airvalve is adjusted using the slotted head screw at the secondary
airvalve lever, and this is released using the allen head screw up underneath the airhorn. Spring windup should be ½
to ¾ turn.
 
    Jammed secondary airvalve:;

Results in:
Poor WOT power and performance, car falls on its face going into the secondaries, flooding going into
the secondaries.
Comments: It is a common problem on the Q-Jet for the two back screws in the airhorn to have been tightened so
much that the airhorn is distorted in this area. This distortion will jam the secondary airvalves, preventing them from
opening. When the secondary throttle plates are mechanically opened (pushing the gas pedal to WOT) and the
airvalve is jammed closed, manifold vacuum will suck fuel right out of the secondary discharge nozzles with no
airflow going through the secondary side. To fix this, the carb must be removed, and the displaced metal must be
filed away. Often, the secondary airvalve plates must be loosened and re-aligned to assure a bind-free operation.
 
    Incorrect, Missing or Damaged Secondary Airvalve Rod:

Results in:
Car falls on its face when the gas pedal is pushed to the floor, sag going into the secondaries, flat spot
going into the secondaries, jerk or delay going into the secondaries, flooding during cold-start, erratic fast idle.
Comments: The secondary airvalve rod is one of the most misunderstood parts on a Q-Jet carb. Owners see that the
rod is holding the secondary airvalve closed when the engine is running, so the rod is either removed or bent. The
next guy who builds the carb installs an incorrect rod, which really screws up the secondary airvalve operation. On
early Q-Jets, this rod also operates the choke vacuum break system, so removal or bending of the rod prevents the
choke from cracking open during cold-start. This causes flooding and rich running in cold weather operations.

 
    Cracked or Warped Air Horn:

Results in:
Fuel leaking around air horn gasket, poor idle, ineffective idle mixture screws, erratic idle, fuel
discharging out main discharge nozzles at idle, hesitations & stumbles, poor throttle response.
Comments: Very common on older Q-Jets: The two forward carb hold-down bolts have been tightened so tight that
the entire top of the carb is warped or cracked. Once this happens, the airhorn no longer seals properly to the float
bowl of the carb. This causes leaks in the idle transfer fuel circuit between the airhorn and the bowl, effectively
eliminating the entire idle circuit in the carb. It also causes the gasket to be ineffective in sealing the rest of the
airhorn to the bowl, resulting in fuel leakage around the top of the carb. No fix for this – buy a new carb.
 
    Wrong Air Horn Gasket:

Results in:
Poor idle, ineffective idle mixture screws, erratic idle, fuel discharging out main discharge nozzles at
idle, hesitations & stumbles, poor throttle response.
Comments: Use of the incorrect airhorn gasket can result in blockage of idle bleed air passage and blockage of idle
fuel passages between the float bowl and the airhorn. There are several styles of airhorn gaskets, and many of them
look very similar. It’s a good idea to lay the airhorn gasket you’re going to use onto the float bowl and visually
verify that all the holes line up.
 
    Plugged accelerator pump transfer holes in air horn:

Results in:
Off-idle stumble or hesitation, hard cold-start.
Comments: There is a tiny transfer hole that runs horizontally in the air horn, just inside of the actual accelerator
pump discharge orifice. It is common for this to be plugged with some type of debris, especially in carbs that have
been sitting around for a while. If this passage is plugged, there will not be any accelerator pump shot.
 
    Jammed accelerator pump check ball:

Results in:
Off-idle stumble or hesitation, hard cold-start.
Comments: This is a common problem in carbs that have been allowed to “dry out” for a while. Sediment in the
bottom of the fuel bowl will lock up the check ball as if it were set in concrete. This will prevent any accelerator
pump discharge.
 
    Accelerator Pump Rod Installed in Wrong Hole in Pump Arm:

Results in
: Off-idle stumble or hesitation.
Comments: There are two holes in the accelerator pump lever arm for the lever arm rod to engage into: Inner and
Outer. The outer hole produces a leaner pump shot, and can cause a lean stumble on engines requiring a robust
pump shot. Corvettes and performance cars always used the rich, inner pump arm hole.
 
    Jammed accelerator pump:

Results in:
Off-idle stumble or hesitation, hard cold-start.
Comments: This is becoming a common problem. The alcohol additives in modern fuels are not compatible with the
materials used in many accelerator pumps (even some of the pumps in brand new carb kits). This causes the pump
plungers to swell up and to seize in the pump bore. The spring on the pump shaft still allows the shaft to move up
and down, making it look as if the pump is functioning. But the pump itself can be seized up solid in the bore with
the shaft working just fine. To fix this, you must install a pump that is specifically compatible with alcohol.
 
    Worn accelerator pump:

Results in:
Off-idle stumble or hesitation, hard cold-start.
Comments: Common on older carbs and on carbs that have been allowed to dry out (vehicles stored without being
started through the entire winter season). The rubber plunger material will dry out and shrivel up, making the
accelerator pump completely ineffective. The pump must be replaced.
 
    Missing idle bleed restrictors:

Results in:
Poor idle, ineffective idle mixture screws, off-idle hesitations, very high idle required to keep engine
from dying when placed in “drive,” fuel discharging out main discharge nozzles at idle.
Comments: Different Q-Jets have different idle bleed calibrations. Part of this calibration is the installation of some
brass restrictor orifices in the venturi area/booster ring area. Many commercial rebuilders will actually remove the
orifices during rebuild, causing too much air to be pulled into the idle fuel circuit. The engine will then only idle if

the idle speed is run up into the transition & cruise metering circuit. This is a difficult problem to diagnose and
correct, since some Q-Jets did not use the restrictors, and replacement restrictors are not serviced separately.
 
    Emulsion tubes fallen out of air horn and laying in float bowl:

Results in:
Poor idle, hesitations, odd & inefficient performance.
Comments: It is very common on older and high-mileage Q-Jets for the air horn emulsion tubes to fall out and end
up in the bottom of the float bowl. These tubes assist in the emulsifying of the fuel mixture, and will cause a notable
decrease in carb performance when they fall out. The can be re-installed into the air horn and tapped into their fullyseated position with a small plastic mallet.
 
    Plugged idle air bleed transfer holes in float bowl:

Results in:
Poor idle, idle mixture screws ineffective, fuel discharging out main discharge nozzles at idle, erratic
idle, high idle required to keep engine running (engine dies when idle speed is decreased).
Comments: The Q-Jet has supplementary idle air bleed holes in the throttle plate just below the primary butterfly
plates. These bleed holes assure that the engine is allowed to pull enough air at idle to keep it running, while keeping
the throttle plates closed far enough to keep fuel discharging through the idle metering circuit. The bleed holes act
like the “drilling holes in the butterflies” trick that so many people advocate. The air for these holes is transferred
from the venturi area of the carb through two small holes in the outer plenums of the float bowl. For some reason, it
is very common for commercial carb builders to plug these transfer holes with aluminum plugs or rivets. This
dramatically changes the idle characteristics of the carb, and frequently destroys the entire idle and cruise mixture
control. If you see these plugs installed, drill them out and set up your carb the way it should be.
 
    Leaking well plugs:

Results in:
Hard starting after the car has been sitting for a day or two. Flooding and black smoke when hot-starting.
Comments: This is a grossly over-rated problem. It is not by far as common as some articles and publications would
have you believe. The Q-Jet uses soft metal plugs to seal off the production drill passages in the bottom of the float
bowl. The passages are drilled and plugged under the main metering jets and under the secondary metering orifices,
usually referred to as the primary and secondary well plugs. The primary well plugs are visible from the bottom of a
fully assembled carb. The secondary well plugs are only visible and accessible once the throttle plate is removed
from the float bowl. If these plugs leak, the float bowl will run empty after sitting overnight, and all the fuel will end
up inside the intake manifold. You can test for this condition by simply removing the carb, filling the float bowl
with fuel, and observing the plugs to see if they leak. It would be a rare condition if you actually have a leaker. But
if the primary plugs leak, the only permanent solution to the problem is to drill the plugs out, tap the passages for a
#10-32 screw, and install a ¼” long allen-head countersunk screw with some good epoxy into each of the two
passages. I see carbs with the plugs coated with epoxy: Simply smearing some epoxy onto the well plugs will not
seal them permanently. You have to drill, tap, and plug them with the epoxied screws if you want the repair to last.
The secondary well plugs can be sealed by using the seal gasket supplied in all of the Echlin brand carb kits.
 
    Wrong throttle plate gasket:

Results in:
Poor idle, erratic idle, ineffective idle mixture screws, symptoms of a vacuum leak.
Comments: There are several different designs for the throttle plate gasket, and they do not interchange. Two
common problems occur: The first problem was addressed in a GM Service Bulletin around 1971. There is a
difference in the open area in the gaskets just forward of the centerline of the primary throttle holes. Some later
carbs use a gasket with a larger open hole in this area. If this gasket is used on an earlier carb, you will end up with a
massive, undetectable vacuum leak. The other problems with these gaskets occur due to the idle fuel and vacuum
bleed holes not lining up from one design to the next. Use of the incorrect gasket can result in blocked idle fuel and
blocked vacuum signals. Always lay the gasket onto the float bowl and onto the throttle plate to check the hole
alignments.
 
    Loose throttle plate:

Results in:
Erratic idle, poor idle mixture screw response, off-idle hesitations, symptoms of a vacuum leak.
Comments: Since the throttle plate attach screws are located in the bottom of the carb, you cannot tell that the screws
are loose until the carb is removed from the engine. It is quite common for the screws to be loose, producing not
only a vacuum leak around the base of the fuel bowl, but violating the seal for the idle fuel transfer passages. This
makes adjustment of the idle mixture and idle speed almost impossible.

 
    Wrong idle mixture screws:

Results in:
Poor idle screw mixture response, poor idle, erratic idle.
Comments: There have been several styles of idle mixture screws used in the Q-Jets over the years. The screws
differ in the taper of their tips: Some screws have a steep taper, while others are very long and slender. Commercial
rebuilders typically remove the nice factory screws and install aftermarket one-size-fits-all steep-taper screws. These
steep-taper screws often do not work at all in many Q-Jets. Most of these steep-taper screws are brass. All factory QJet idle mixture screws are steel. If you have a set of brass idle mixture screws in your carb, trash them and find a
correct set of factory screws.
 
    Seized/rusted idle mixture screws:

Results in:
Adjustment of idle mixture not possible.
Comments: A lot of the cars used in the Midwestern and Coastal States have severe corrosion problems, as we
know. The steel mixture screws in the aluminum throttle plate promote dissimilar metals corrosion, and can often
seize solid into the throttle plate. Attempts to force them out will usually result in the screws snapping off in the
throttle plate, rendering the carb useless. To remove rusted and seized mixture screws, the throttle plate must be
removed from the carb, and the screws must be carefully heated while “rocking” them back and forth to loosen them
up.
 
    Seized/rusted fast idle screw & cam:

Results in:
Adjustment of fast idle not possible.
Comments: The same cars with the rusted and seized idle mixture screws will quite often also have rusted & seized
fast idle screws and idle cams. Once again, any attempt to force the fast idle screw will usually result in the screw
snapping off in the fast idle lever. To remove rusted and seized fast idle screws, the throttle plate must be removed
from the carb, and the screw must be carefully heated while “rocking” it back and forth to loosen it up. To loosen
the cam, the throttle shaft cam screw must be carefully removed, and the spring & linkage pieces must be carefully
pried loose, cleaned up, and re-assembled.
 
    Primary throttles adjusted to not open fully:

Results in:
Poor throttle response, poor WOT performance.
Comments: It is amazing how common it is for the throttle linkage on the carb to be grossly misadjusted. When
rebuilding a carb, always operate the throttle linkage and make sure the primary throttles open fully. They should
open to the exact vertical position. Anything less will prevent full airflow through the carb. The position of the
blades is adjusted by bending the throttle stop linkage.
 
    Primary throttles adjusted to open over-center:

Results in:
Poor WOT performance.
Comments: Even more common that throttles that do not open fully are throttles that have been adjusted to open
over-center. I guess people figure that te car will run faster if you can open the throttle even more. Fact is, once the
throttle blades go over-center, they are restriction airflow just as bad as a throttle that does not open fully. Check for
an over-center condition anytime you rebuild you carb, and bend the linkage so that the throttles stop at the vertical
position.
 
    Secondary throttles adjusted to not open fully:

Results in:
Poor WOT performance.
Comments: The secondary throttle shaft is actuated by a link off the primary shaft that hits a lever on the secondary
throttle shaft. It is common for this to be misadjusted so that the secondary throttle blades do not fully open. Some
factory cars & carbs were intentionally set up to limit secondary throttle opening (like 1st-generation 400-powered
Firebirds) in order to limit horsepower for one reason or another. Check for this whenever the carb is disassembled
and adjust it by bending the contact tang on the primary throttle shaft.
 
    Secondary throttles adjusted to open over-center:

Results in:
Bog or hesitation going into the secondaries, poor WOT performance.
Comments: More common that secondaries that do not open fully are secondaries that open too far. Q-Jet secondary
throttle plates should NOT open to the full vertical position or beyond. The secondary throttle plates should open to
a position where the angle of the throttle plates points and aligns towards the lower edge of the secondary airflow
baffle located in the secondary venturi bore. When the secondary throttle plates are opened beyond this point,

turbulence in the secondary side actually decreases airflow. Also, if the secondary throttle plates are adjusted to open
over-center, they will, as a result, also open too soon. This will cause a stumble or hesitation going into the
secondaries. Adjust and align the opening by bending the primary throttle contact tang.
 
    Secondary throttles not closing – not aligned in bores:

Results in:
Fuel discharging out the secondary discharge nozzles at idle & cruise, poor idle, flooding, black smoke,
off-idle stumble.
Comments: If the secondary throttle plates do not fully close, or if they are misaligned in their bores, engine vacuum
will be applied to the secondary venturi area. With engine vacuum in the veturi area, and the upper airvalves closed,
fuel will be siphoned out of the secondary discharge nozzles. This will cause a very rich idle and cruise condition.
The problem can be caused by the secondary throttle linkage being bent/misadjusted, or by the secondary butterflies
being misaligned in the throttle plate bores.
 
    Secondary throttle linkage springs missing or incorrectly installed:

Results in:
Secondary throttles not closing (see above), secondary throttles inoperative.
Comments: There is no reason to disassemble and remove the secondary throttle shafts, throttle plates, and the
associated springs during a rebuild, but some people do it anyway. During re-assembly, these parts get left out or
incorrectly assembled, resulting in the secondary throttle plates not closing fully or no longer actuating at all. These
problems can be hard to identify unless you are very familiar with the Q-Jet or unless you have another carb to
compare against.
 
  Missing secondary airflow baffle:

Results in:
Poor secondary WOT performance, sags or hesitations at WOT.
Comments: The baffle installed inside the secondary venturi area actually creates the venturi effect required to
discharge the fuel properly out of the secondary discharge nozzles. Deleting the baffle causes turbulence in the
secondary venturies that will completely mess up your secondary metering. Make sure the baffle is correctly in
position. It is frequently missing.
 
  Choke plate misaligned:

Results in:
Poor cold-running characteristics, sticking choke, engine stalling when cold, engine not coming down off
fast idle unless gas pedal is hit.
Comments: If the choke plate is misaligned in the airhorn, the choke can stick and bind in a part-closed position. It
cam also fail to close completely during initial cold-start. Check to make sure the plate fits squarely and tightly in
the air horn. If not, crack the two screws loose and wiggle the plate around until it fits right.
 
  Choke pulloff seized or ruptured:

Results in:
Poor cold-run characteristics, flooding when cold, stalling when cold, poor fast idle control, sag or
hesitation going into the secondaries.
Comments: This is one of the most common maladies on older Q-Jets. When the pulloff fails, not only do you loose
proper control over the choke, but you also loose opening rate control over the secondary airvalve. Always check the
pulloff by attaching a long piece of vacuum hose to it and sucking on it. The pulloff should smoothly retract, and it
should smoothly extend when the suction is released.
 
    Choke pulloff incorrectly adjusted:

Results in:
Poor cold-run characteristics, stalling when cold, flooding when cold, engine won’t stay running after
cold start-up.
Comments: The primary purpose of the choke pulloff is to crack the choke open just a tad upon initial cold-start. If
the choke is not cracked open, the engine will flood. If the choke is cracked open to far, the engine will lean out and
stall. When correctly adjusted, the choke pulloff will open the choke ¼” as measured from the forward lower edge
of the choke plate to the airhorn wall.
 
    Fast idle screw incorrectly adjusted:

Results in:
Initial cold-startfast idle too high or too low.
Comments: The fast idle screw is hidden so well that many people don’t know it even exists. The screw is located
under the choke linkage on the passenger side of the car. The screw head faces forward. Fast idle speed should be
adjusted to about 1200 rpm on a cold engine.

 
    Choke linkage/intermediate shaft system incorrectly assembled or missing pieces:

Results in:
Inoperable choke, engine not coming down off fast idle, sticky choke.
Comments: The choke and fast idle linkage on a Q-Jet can be a mystery of odd parts once the carb is fully
disassembled. It is easy to get some of the pieces incorrectly assembled or installed in a bind. When this happens,
the choke system will not operate properly. Best to take a look at another carb and do a little comparison if you’re
not intimately familiar with the linkage system.
 
    Broken choke housing:

Results in:
Poor choke performance, inoperable choke, vacuum leak.
Comments: The 1975 and newer Q-Jets use a cast aluminum choke housing for either a hot air choke or for an
electric choke. Many carb kits contain new choke hosing screws, and these screws are often too big for the intended
application. Installation of the aftermarket screws will crack the choke housing, and can make it impossible to
properly adjust the choke cover. The hot air chokes have a vacuum source from the inside of the choke cover to
draw hot air through the choke system. If the housing is cracked from the oversized screws, and the choke cover is
not tightly installed, the vacuum source will not pull the hot air through the system properly, and the choke will
remain “on” too long. Broken housings can be welded.
 
    Missing choke intermediate shaft seals:

Results in:
Sticky choke operation due to dirt contamination.
Comments: The 1975 and newer Q-Jets use two shaft seals on the choke intermediate shaft: One seal is installed
inside the choke housing, and the other seal is installed in the carb float bowl where the shaft goes through the side
of the bowl. Failure to install the seals can result in a sticky choke system.
 
 
Missing choke intermediate shaft bushing:

Results in: Sticky choke operation, fast idle won’t come down without romping on the gas pedal.
Comments: On the 1975 and newer Q-Jets, the choke intermediate shaft (the shaft coming out of the choke housing
and going into the carb body) is supported by a bushing in the side of the float bowl. This bushing also houses the
shaft seal. The bushing is usually steel, but I’ve also seen plastic bushings on original carbs. On commercially
rebuilt carbs, this bushing is frequently completely missing, leaving a ½” diameter hole in the side of the carb. This
causes the choke intermediate shaft to be unsupported on its end where it enters the carb, and the shaft will stick and
bind in the choke housing as a result. These bushings are not available, so you have to rob one out of a donor carb.
 
    Missing secondary lockout lever:

Results in:
Bogging, sag or stumble when going to WOT with a cold engine. Engine damage from going to WOT on
a cold engine.
Comments: The secondary lockout lever, located on the passenger side of the carb just forward of the secondary
throttle shaft, is intended to prevent the secondaries from opening when the engine is cold. Placing the engine under
maximum load before reaching normal operating temperature can result in engine damage. The lever is retracted by
the choke linkage as the choke opens up. Many people are afraid that the lockout lever is preventing the secondaries
from opening, so they remove the lever. This is fine on a racecar, but not advisable on a street car. Make sure your
choke is operating, and make sure the lever is adjusted correctly to perform its intended function. When properly
adjusted it will retract when the engine has warmed up, and the secondaries will function as intended.
    Incorrectly adjusted secondary lockout lever:

Results in: Inoperable secondaries.
Comments: It is possible to have the lockout lever and the secondary throttle shaft pin adjusted so that the secondary
throttles remain locked out even after engine warm-up. Check the lockout lever once the choke is wide open and
assure that the lever does not interfere with throttle opening.
    Missing idle vent parts:

Results in: Dirt & debris entering the float bowl.
Comments: The early Q-Jets use an idle vent valve on the forward, upper part of the carb. The idle vent valve
consists of two stainless steel “reed” pieces, a rubber seal, an actuation rod to the accelerator pump lever arm, and a
sheet metal “doghouse” to cover all the parts. Over the years, many carbs have come up missing some or all of these

parts. This not only results in a carb that looks incorrect and incomplete, but the resulting hole in the top of the carb
is a perfect source for contamination of the carb float bowl.
 
    Incorrectly adjusted idle vent:

Results in:
Engine stalling/flooding when hot idling.
Comments: The idle vent valve is to be adjusted so that the vent is cracked open when the throttle is at idle, and it
should close when the throttle is moved off-idle. If the vent does not open at all at idle, the engine may display poor
hot idle characteristics and stalling when hot. If the valve is adjusted so it never closes at cruise, dirt and debris can
enter the float bowl.
 
    Wrong accelerator pump linkage installed:

Results in:
Off-idle hesitations, stumbles, flat spot when accelerating.
Comments: Different model Q-Jets use different length accelerator pump actuation rods. Many of these carbs have
been pieced together by rebuilders using various different parts. If the incorrect pump rod has been installed, the
accel pump may be inoperable for the initial part of its travel, or the pump may bottom out in the pump bore too
early in the throttle travel. Poor throttle response and/or hesitations will result.
 
    Wrong accelerator pump installed:

Results in:
Off-idle hesitations, stumbles, flat spot when accelerating.
Comments: Just like the pump actuation rod, different Q-Jet models use different length accelerator pumps. Use of
an incorrect length pump will change the geometry of the accelerator pump linkage, and can result in an inadequate
or delayed pump shot. After rebuilding a carb, always visually inspect the function of the accelerator pump to assure
that the pump is discharging fuel into the primary venturis upon the slightest movement of the throttle (do this with
the carb primed and the engine off).

 


CommentAdd Comment/Rating


Other Articles by this Author

Back
Set us as your default homepage Bookmark us Terms and Conditions  http://PatrickTheSalvageGuy.com/ Viewers: Members and Guests Page load time 0.078 seconds Go To Top Of Page

Sponsor Advertisment: